Note: Answers are provided in () but may not match yours in terms of sig figs

Stoichiometry Worksheet I

		0.001	unomicaly v	OXXOICCE	and the same of th	The second second
Name			Section	nDu	e Date_	**************************************
1. Ammon	ia gas rea	cts with ox	ygen gas accor	ding to the foll	owing equa	tion:
	4 NH3	+ 5.O ₂	> 4 NC	+ 6 H ₂ O		
a. Ho ammo	w many n onia? (29 :	noles of oxy mole)	ygen gas are ne	eeded to react w	vith 23 mole	es of
		grams of No of ammonia		l when 25 mole	s of oxygen	gas react
٠.						
c. If mono	24 grams oxide are f	of water ar formed? (0.	e produced, ho .89 mole)	w many moles	of nitrogen	
		,				

d. How many grams of oxygen are needed to react with 6.78 grams of ammonia? (16.0 g) $\,$

2. The compound calcium carbide, CaC₂, is made by reacting calcium carbonate with carbon at high temperatures. The UNBALANCED EQUATION for the reaction is:

- a. Balance the equation.
- b. How many moles of carbon are required to produce 5.0 moles CO₂? (8.3 mole)
- c. How many grams of calcium carbide are produced when 4.0 moles of carbon react with an excess of calcium carbonate? (102 g)
- d. How many moles of carbon dioxide are produced when 55 grams of calcium carbonate react with an excess of carbon? (0.83 mole)
- e. How many grams of carbon are needed to react with 453 grams of calcium carbonate? (136 g)
- f. How many grams of calcium carbonate are needed to form 598 grams of calcium carbide? (934 g)

Stoichiometry Worksheet II

Name
For the given combustion reaction of octane, C8H18, answer the following questions: (Answers to the questions are given in parenthesis.)
2C8H ₁₈ + 25O ₂ > 16CO ₂ + 18H ₂ O
a. Write all possible molar ratios from this equation.
b. How many moles of CO ₂ would be produced by reacting 0.67 moles of octane with excess of oxygen? (Amount of oxygen is not involved in the calculation) (5.4 mol CO ₂)
c. How many moles of H ₂ O would be produced by reacting 0.67 moles of octane with excess of oxygen? (6.0 mol H ₂ O)
d. If we react 225 g of octane C8H18 with oxygen, how many moles of O2 are required? (24.7 mol O2)
e. If we react 225 g of octane C8H18 with excess oxygen, how many moles of CO2 are produced? (15.8 mol CO2)

2C8H₁₈ + 25O₂ -----> 16CO₂ + 18H₂O

- f. If we react 225 g of octane C8H18 with excess oxygen, how many moles of H2O are produced? (17.8 mol H2O)
- g. If we wish to make 7.5 mol CO2, how many grams of C8H18 will be used? (110 g C8H18)
- h. If we wish to make 7.5 mol CO₂, how many grams of O₂ do we need ? (380 g O₂)
- i. If we wish to make 7.5 mol CO2, how many grams of H2O will be produced? (150 g H2O)
- j. If we have 3.56 g C8H18, how many grams of O2 do we need to react with it? (12.5 g O2)
- k. If we have 3.56 g C8H18, how many grams of CO2 will be produced? (11.0 g CO2)
- 1. If we have 3.56 g C8H18, how many grams of H2O will be produced? (5.06 g H2O)
- m. Using the answers from j, k, and l for burning of 3.56 g of octane, check if the law of conservation of mass is obeyed or not.